HFO-1234yf Low GWP Refrigerant for MAC Applications

December 9, 2008

Barbara Minor
Engineering Fellow
DuPont Fluoroproducts

Background

DuPont And Honeywell Have Identified HFO-1234yf (CF₃CF=CH₂) As The Preferred Low GWP Refrigerant Which Offers The Best Balance Of Properties And Performance

Other Auto Industry Options Have Certain Limitations

- CO₂: complexity, energy efficiency and requires mitigation
- 152a / secondary loop: performance, size and weight

HFO-1234yf – The Leading Alternative Refrigerant to Replace R-134a

Excellent environmental properties

- Very low GWP of 4, Zero ODP, Favorable LCCP
- Atmospheric chemistry determined and published

Low toxicity, similar to R-134a

Low acute and chronic toxicity

System performance very similar to R-134a

- · Excellent COP and Capacity, no glide
 - From both internal tests and OEM tests
- Thermally stable and compatible with R-134a components
- Potential for direct substitution of R-134a

Mild flammability (manageable)

- Flammability properties significantly better than 152a; (MIE, burning velocity, etc)
- Potential for "A2L" ISO 817 classification versus "A2" for 152a based on AIST data
- Potential to use in a direct expansion A/C system

Global Solution

- Lowest total cost of transition than any alternative
- good performance in all climates, and car sizes

HFO-1234yf Properties

Properties	<u>1234yf</u>	<u>134a</u>		
Boiling Point, T _b	-29°C	-26°C		F ₃ C
Critical Point, T _c	95°C	102°C	1234yf	
P _{vap} , MPa (25°C)	0.673	0.665	CF ₃ CF=CH ₂	$C = CH_2$
P _{vap} , MPa (80°C)	2.47	2.63	GI 3GI -GI 12	
Liquid Density, kg/m³ (25°C)	1094	1207		F
Vapor Density, kg/m³ (25°C)	37.6	32.4		

HFO-1234yf - Excellent Environmental Properties

ODP = 0

100 Year GWP = 4 (GWP_{134a} = 1430)

Measurements completed & published

Atmospheric lifetime = 11 days

Atmospheric chemistry measured

- Atmospheric breakdown products are the same as for 134a
- No high GWP breakdown products (e.g. NO HFC-23 breakdown product)
- Results published in 2008

Published Papers

- •Papadimitrou, V.C. et al, "CF₃CF=CH₂ and Z-CF₃CF=CHF: Temperature dependent OH rate coefficients and global warming potentials", *Phys. Chem. Chem. Phys.* Vol 10 (2008) pp 808-820.
- •Hurley, M.D. et al, "Atmospheric chemistry of CF₃CF=CH₂: Products and mechanisms of Cl atom and OH radical initiated oxidation", *Chem. Phys. Lett.* Vol 450 (2008) pp 263-267.
- •Nielsen, O.J. et al, "Atmospheric Chemistry of CF₃CF=CH₂: Kinetics and mechanisms of gas phase reactions with Cl atoms, OH radicals and O₃", *Chem. Phys. Lett.* Vol 439 (2007) pp 18-22.

HFO-1234yf Toxicity Results HFO-1234yf R134a

Test

	Acute Lethality	No deaths 400,000 ppm	No deaths 359,700 ppm	✓
	Cardiac sensitization	NOEL > 120,000 ppm	NOEL 50,000 ppm LOEL 75,000 ppm	✓
	13 week inhalation	NOAEL 50,000 ppm	NOAEL 50,000 ppm	\checkmark
	Developmental (Rat)	NOAEL 50,000 ppm	NOAEL 50,000 ppm	✓
	Genetic Toxicity	Not Mutagenic	Not Mutagenic	✓
	13 week genomic (carcinogenicity)	Not active (50,000 ppm)	Not tested	✓
	2-yr carcinogenicity	Not required (see genomics)	Not carcinogenic	
j	Environmental Tox	NOEL > 83 mg/L (Pass)	NOEL > 100 mg/L (Pass)	✓
Freday	Developmental (Rabbit)	NOAEL 4,000 PPM, LOAEL 5,500 PPM	NOAEL 2,500 PPM LOAEL 10,000	✓
A CONTRACTOR	1-Gen segment of 2-Gen Reproductive	Interim NOAEL 5,000 ppm (6-hours exposures)	NOAEL 50,000ppm (1-hour exposures)	

HFO-1234vf Has Low Toxicity

ATEL Calculation –Short Term Exposure

ATEL (Acute Toxicity Exposure Limit) is a value used by standards organizations (e.g. ASHRAE 34) to reduce the risks of acute toxicity hazards in normally occupied spaces.

It is calculated from the acute toxicity data for a given refrigerant and provides an estimate of the maximum exposure limit for a short time period (e.g. 30 minutes)

Refrigerant	ATEL (ppm)
R-12	18,000
R-134a	50,000
R-152a	50,000
CO ₂	40,000
HFO-1234yf	101,000

HFO-1234yf Has a Favorable ATEL Value

HFO-1234yf: Excellent Plastics Compatibility

ND8 PAG at 100℃ for two weeks

Refrigerant	Plastics	Rating	24 h Post Weight Chg. %	Physical Change
HFO-1234yf	Polyester	1	4.4	0
"	Nylon	1	-1.5	1
TI TI	Ероху	1	0.3	1
п	Polyethylene Terephthalate	e 1	2.0	0
11	Polyimide	0	0.2	0

Refrigerant	Plastics	Rating	24 h Post Weight Chg. %	Physical Change
R134a	Polyester	1	5.6	0
n n	Nylon	1	-1.4	1
n	Ероху	1	0.3	1
"	Polyethylene Terephthalate	e 1	2.8	0
1 44"	Polyimide	0	0.7	0

Rating 0 = best when weight gain < 1 and physical change = 0

1 = borderline when weight gain > 1 and < 10 and/or physical change upto 2

2 = incompatible when weight gain > 10 and/or physical change = 2

QU POND

HFO-1234yf: Excellent Elastomers Compatibility

ND8 PAG at 100℃ for two weeks

Refrigerant	Elastomers	Rating	24 h Post Linear Swe		24 h Post Delta Hardness
HFO-1234yf	Neoprene WRT	0	0.0	-0.3	1.0
"	HNBR	0	1.6	5.5	-7.0
II .	NBR	0	-1.2	-0.7	4.0
II	EPDM	0	-0.5	-0.6	4.0
"	Silicone	1	-0.5	2.5	-14.5
II II	Butyl rubber	0	-1.6	-1.9	0.5

			24 h Post		
Refrigerant	Elastomers	Rating	Linear Swe	l Weight	Delta
			%	Gain %	Hardness
R134a	Neoprene WRT	0	-0.6	-1.3	2
II .			2.1	8.6	-5.5
II II	NBR	0	0.0	3.0	-3.5
· ·	EPDM	0	-1.1	-0.4	-2
12 "	Silicone	0	-1.4	1.4	-2.5
1	Butyl rubber	0	-1.1	-1.6	-3.5

Rating

0 = best when weight gain < 1 and physical change = 0

1 = borderline when weight gain > 1 and < 10 and/or physical change upto 2

2 = incompatible when weight gain > 10 and/or physical change = 2

Permeation HFO-1234yf vs R-134a

MAFLOW

Standard Veneer Hose

ULEV Veneer Hose

MAFLOW

Results

HFO-1234yf shows lower permeability values toward Veneer hoses compared to R134a.

With the same gas concentration (0.6g/cm³) the inner pressure with HFO-1234yf is lower (e.g: at 90℃ was -20%) **MAFLOW**

DuPont Refrigerants. The Science of Cool."

Refrigerant Flammability Tests

Is it flammable? If yes, Flame Limits will exist.

- LFL lower flammability limit
- UFL upper flammability limit

What is the probability of an ignition source being present of sufficient energy to cause an ignition?

- Autoignition temperature
- Minimum ignition energy (MIE)

What is the impact (damage potential) if an ignition occurs?

- Heat of combustion
- Burning velocity

LFL Values Ammonia (15 vol.% HFC-32 (13.3 vol.% HFO-1234vf 6.2 vol.% Methane 4.6 vol.% HFC-152a 3.9 vol.% Ethylene 3.0 vol.% Oxide Acetylene 2.5 vol.% Propane | 2.1 vol.%

HFO-1234yf Flame Limits

- HFO-1234yf flame limits measured using ASTM E681-04 T= 21°C: 6.2 vol.% to 12.3 vol.%
- Low LFL value → more flammable
- Wider UFL LFL → more flammable

ASTM E681 Apparatus

- ASTM E-681 in US
 - 2004 version cited by ASHRAE (12 liter flask, spark ignition)
 - Flame must reach the wall and exhibit > 90 degree angle
 - 1985 version cited by SAE (5 liter flask, match ignition)
- A11 in EU
 - 5 cm x 30 cm Vertical tube
 - Spark ignition
 - Flame travels up the tube

More Flammable

1.6 vol.%

Gasoline

HFO-1234yf Is Less Flammable Than 152a

Burning Velocity

Final Technical Report on Flammability Assessment of 1234yf

Kenji Takizawa

National Institute of Advanced Industrial Science and Technology (AIST)

Burning velocity as a function of (a) concentration and (b) equivalence ratio

By fitting all the data to a paraboric function (4), maximum S_{u0} was obtained as 1.52 cm s⁻¹ at ϕ =1.32. Therefore, the maximum S_{u0} is 1.5 cm s⁻¹ at ca. 10 vol%.

$$S_{u0} = S_{u0,max} + s_1 (\phi - \phi_{max})^2$$
 (4)
= 1.52 - 2.13 $(\phi - 1.32)^2$

Burning Velocity Measurements

Measurements performed in 3 liter spherical apparatus

Experimental result for HFO-1234yf: 1.5 cm s⁻¹

ISO 817 Flammability Classification is 2L (lowest flammable class classification)

	Propane	152a	NH₃	32	1234yf
BV, cm s ⁻¹	16	23	7.2	6.7	1.5*

Minimum Ignition Energy

12-liter glass sphere used in ASTM E681 flammability limit tests was modified for MIE testing in order to eliminate potential wall quenching effects seen in standard 1 liter vessel

Materials Tested:

- HFC-32 from 16-22% (v/v) in 1% increments at 30 and 100 mJ nominal
- HFO-1234yf from 7.5-11% (v/v) in 0.5% increments up to 1000 mJ nominal
- Ammonia at 22% (v/v) at 100 and 300 mJ nominal

<u>Refrigerant</u>	No Ignition Occurred	Ignition Occurred
HFC-32	30 +/- 12 mJ	100 +/- 30 mJ
Ammonia	100 +/- 30 mJ	300 +/- 100 mJ
HFO-1234yf	5,000 +/- 350 mJ	10,000 +/- 350 mJ

HFO-1234yf Is Very Difficult To Ignite With Electrical Spark

HFO-1234yf Mild Flammability Properties

Flammability Properties

	LFL ^a (vol%)	UFL ^a (vol%	$^{\Delta}$ (v	MIE ol%) (mJ)	BV ^c (cm/s)
Propane	2.2	10.0	7.8	0.25	46
R152a	3.9	16.9	13.0	0.38	23
R32	14.4	29.3	14.9	30-100 ^b	6.7
Ammonia	15	28	13	100-300 ^b	7.2
HFO-1234yf	6.2	12.3	6.1	5,000-10,000 ^b	1.5

Flammability Index

	R	F	RF	RF2
HFO-1234yf	0.97	0.27	3.6	0.6
32	1.31	0.33	4.6	2.3
152a	1.78	0.5	16.6	17.9
Propane	1.99	0.55	56.7	37.2

$$R = \frac{Cst}{LFL}$$

$$F = 1 - \sqrt{\frac{LFL}{UFL}}$$

$$RF = \left[\sqrt{\frac{UFL}{LFL}} - 1\right] \times \frac{Q}{M}$$

$$RF2 = \left\{\left(\sqrt{\frac{UFL}{UFL}} - LFL\right) / LFL\right\} \times Qst \times Su$$

Cst = Stoichiometric composition in air, vol.%

Q = Heat of Combustion per one mole

Qst = Heat of Combustion per one mole of the Stoichiometric mixture, kJ/mol

Su = Burning speed in Meters/Second

M = Molecular weight

^aFlame limits measured at 21 C, ASTM 681-01

bTests conducted in 12 litre flask to minimize wall quenching effects

^cBurning Velocity ISO 817 (HFO-1234yf BV measured by AIST, Japan)

Autoignition Temperature & Hot Surface Ignition

The autoignition temperature of HFO-1234yf was determined at Chilworth Technology in UK.

- Uniformly heated 500 ml glass flask, observed in dark for 10 mins.
- Autoignition temperature for HFO-1234yf determined to be 405°C.

Note that the air refrigerant mixture must be at this temperature for ignition to occur.

Experiments were conducted to evaluate the ignition potential of hot surfaces (up to 800°C) to cause ignition.

- 6 mm steel plate heated from behind with propane-oxygen torch
- No ignition seen

- HFO-1234yf vapor sprayed onto the plate
- Infrared Thermometer measured temperature.
 - Three "dots" seen are to aim the thermometer
- Occasional red circles are diffraction rings from the camera lens reflecting the red plate through the refractive index gradient (caused by hot air / cold refrigerant).

Summary of Hot Plate Tests

			Hot Manifold	
		550°C	800°C	>900°C
		Faint Red	Cherry Red	Orange
	Spray No oil	No ignition	No ignition	No ignition
HFO-1234yf	Premixed with air no oil	Not tested	No ignition	No ignition
	with PAG oil	No ignition	No ignition	Ignition
	Spray no oil	No ignition	No ignition	No ignition
R-134a	Premixed with air no oil	Not tested	No ignition	No ignition
	with PAG oil	No ignition	No ignition	Ignition

HFO-1234yf shows same flammability behavior as R-134a - Ignition due to presence of oil

HFO-1234yf Ignitability to Spark from 12-V Battery Short Circuit

Determine whether a spark caused by a short circuit from a 12-V battery located under the seat is capable of igniting an 'optimum' concentration of HFO-1234yf in air

Follow procedures from ASTM E681 in a sealed 12- liter spherical flask; add moisture equivalent to 50% RH at 23° C

Create a short-circuit in the mixture by discharging a high-capacity 12-V automotive battery (1020 cranking amps) across 9.5 mm diameter copper electrodes located in the sphere

No ignitions observed at 8.13, 8.5, and 9.0% HFO-1234yf worst case concentrations at either 20°, 60° or 80℃ (10 trials per concentration)

For comparison, the ignitability of <u>ammonia</u> was tested at a 20% v/v concentration at 20℃ and 60 ° C; <u>ignition was obtained on the first trial</u>

Battery Ignition Apparatus

Sanden HFO-1234yf Performance Optimization Bench Tests

Tests conducted

- R-134a Baseline
- HFO-1234yf drop-in with no changes
- HFO-1234yf with TXV adjustment
- HFO-1234yf with modified TXV by Fujikoki

Sanden Test Matrix

Test Conditions

Point	n _v [1/min]	t _{CL1} [℃]	t _{0L1} [℃]	mc _L [kg/h]	m _{oL} [kg/h]	φ _{οL1} [% rel.H.]	Target Temperature
1.1	800	25	25	750	175	50	t _{0L2} =8℃
1.2	1500	25	25	1200	175	50	t _{0L2} =8℃
1.3	2500	25	25	2200	175	50	t _{0L2} =8℃
2.1	800	25	25	750	350	50	t _{0L2} =8℃
2.2	1500	25	25	1200	350	50	t _{0L2} =8℃
2.3	2500	25	25	2200	350	50	t _{0L2} =8℃
3.1	800	40	25	750	175	50	t _{0L2} =8℃
3.2	1500	40	25	1200	175	50	t _{0L2} =8℃
3.3	2500	40	25	2200	175	50	t _{0L2} =8℃
4.1	800	40	40	750	350	50	max PWM
4.2	1500	40	40	1200	350	50	max PWM
4.3	2500	40	40	2200	350	50	max PWM

Sanden Test Results - Capacity

Cooling capacity similar to R-134a

Sanden Test Results - COP

COP improved versus R-134a

Sanden Bench Test Capacity with Modified TXV

Cooling capacity similar to R-134a

Sanden Bench Test – COP with modified TXV

Additional COP improvement with modified TXV

HW/DP System Bench Test Results

Both Capacity and COP are generally within 5% of 134a performance.

This was recently confirmed at two outside labs.

Lower compression ratio, low discharge temperature (12°C lower at peak conditions)

Further improvements likely with minor system optimization, for example:

Lower ΔP suction line and / or TXV optimization to maintain a more optimum superheat.

HFO-1234yf performance is comparable to 134a; further improvement possible with minor optimization

Preliminary LCCP Analysis

GM Model Using Bench Test Performance Results Relative to R-134a

Average 15% Better LCCP Values; Up to 27% in Europe

1234yf OEM Group – Fuel Consumption Testing

1234yf OEM GROUP

CCFA, JAMA, KAMA, GM / Ford / Chrysler, ANFIA, Jaguar / Land Rover, ...

Is fuel consumption affected by the use of this refrigerant?

 According to the group results, by making a simple optimization of some components (condenser and TXV), it is easy to get same efficiency as current R-134a

Low GWP

A 10

1234yf OEM Group LCCP Results

ALL LIFE CYCLE (LCCP only, using GREEN-MAC-LCCP®-V3)

AR1 Equal Capacity and Efficiency as R-134a

AR2

Equal Capacity as R-134s 10% Less Efficiency than R-134a

AR3

Equal Capacity as R-134a 10% More Efficiency than R-134a

According to the OEM Group, HFO-1234yf efficiency is equal to R-134a. Expansion is possible worldwide => Global benefit of HFO1234yf is 8.8 %

2008 Mobile Air Conditioning Londorship Summit

JAMA LCCP Results

■Emissions per vehicle, Compact Car

▶1234yf LCCP result is 20%-30% less than R134a / CO2.

HFO-1234yf Handling

HFO-1234yf Will Be Handled Similar to R-134a

- •Distribution of HFO-1234yf from manufacturer to auto OEM plants and after sales service markets will be similar to R-134a
- •Minor changes to plant charging equipment and procedures
- •HFO-1234yf can be 100% recovered, recycled and reused on site at service shops
- •HFO-1234yf leaks can be detected with same equipment as R-134a
- Unique fittings will be used ensure no cross contamination with R-134a

Service Readiness

Service Shops

- Refrigerant for service is supplied through distributors and aftermarket channels
- Service technicians will need to have additional safety training on proper product handling/use guidelines.
- Summary of proposed modifications for HFO-1234yf automotive airconditioning service locations
 - Recovery machines will need to be rated for flammables (non-sparking controls).
 Two companies already have products in development:
 - Agramkow Denmark, http://www.agramkow.dk
 - WAECO Germany, http://www.airconservice.de/
- Service technicians operators will need additional information regarding proper use/storage/handling of mildly flammable refrigerants
 - HFO-1234yf MSDS
 - Honeywell/DuPont Safe Handling Guidelines
 - SAE J Standards where applicable
 - Appropriate industry certification according to local/regional/country guideline

HFO-1234yf – The Leading Alternative Refrigerant to Replace R-134a

Excellent environmental properties

- Very low GWP of 4, Zero ODP, Favorable LCCP
- Atmospheric chemistry determined and published

Low toxicity, similar to R-134a

Low acute and chronic toxicity

System performance very similar to R-134a

- Excellent COP and Capacity, no glide
 - From both internal tests and OEM tests
- Thermally stable and compatible with R-134a components
- Potential for direct substitution of R-134a

Mild flammability (manageable)

- Flammability properties significantly better than 152a; (MIE, burning velocity, etc)
- Potential for "A2L" ISO 817 classification versus "A2" for 152a based on AIST data
- Potential to use in a direct expansion A/C system

Global Solution

- Lowest total cost of transition than any alternative
- Good performance in all climates, and car sizes

